FEASIBILITY REPORT

ON

ESTABLISHMENT OF LOCAL MANUFACTURE FACILITY AND TRANSFER OF TECHNOLOGY FOR SMALL HYDRO POWER TURBINES IN WEST AFRICA

By

UNIDO REGIONAL CENTRE FOR SMALL HYDRO POWER in AFRICA ABUJA, NIGERIA.

TABLE OF CONTENTS

1.0 INTRODUCTION AND PROJECT BACKGROUND

- 1.1 Project Background
- 1.2 Demographic Trends

2.0 HYDRO TURBINES MARKET ANALYSIS IN NIGERIA

- 2.1 Demographic Trends
- 2.2 Economic Situation
- 2.3 Electricity Generation
- 2.4 National Electrification Programme
- 2.5 Household Energy Projection
- 2.6 Market Potential
- 2.7 Market Projections.

3.0 SELECTION OF SITE / INSTITUTION

- 3.1 Detail Survey of Sites
- 3.2 Selection Criteria
- 3.3 Scoring and Analysis.
- 3.4 Selected Site.

4.0 TECHNICAL ANALYSIS

- 4.1 Basic Assumption
- 4.2 Types of Turbine
- 4.3 Cross flow Turbine
- 4.4 Turbine Design Issues
- 4.5 Manufacturing Methods/Choice of Material
- 4.6 Recommended Procedure for manufacturing
- 4.7 Work plan / Spreadsheet
- 4.8 Generators/ Controls / Auxiliaries.

5.0 ECONOMIC AND FINANCIAL ANALYSIS

- 5.1 Break-Even Analysis
- 5.2 NPV Analysis
- 5.3 Payback Analysis

6.0 SUSTAINABILITY PLANS

7.0 CONCLUSION

LIST OF FIGURES

- Figure 1 Map of Africa.
- Figure 2. Map of Nigeria
- Figure 3. Map of Enugu and Ondo States
- Figure 4. Nigeria River System and Basins

LIST OF TABLES

Table 1	-	Electricity Installation Generation Capacity in Africa (1997)
Table 2.0	-	Percentage of Households by Type of Electricity Supply.
Table 2.1	_	Small Hydro Electricity Projection in Nigeria.
Table 2.2	-	Investigated Potential Sites in Nigeria
Table 2.3	-	Estimated Nigeria Small Hydro Power Demand
Table 3.1	_	Scoring of Surveyed Institutes
Table 4.1	-	Small Turbine Classification
Table 4.2	-	Projected Manufacturing Cost Estimate and Duration.
Table 5.1	-	Break-Even Analysis
Table 5.2	-	NPV Analysis
Table 5.3	-	Payback Analysis

LIST OF ABBREVIATIONS

S/N	Abbreviations	Meanings
1.	ECN	Energy Commission of Nigeria
2.	NDA	Niger Dams Authority
3.	NEPA	National Electricity Power Authority
4.	PHCN	Power Holding Company of Nigeria
5.	FGN	Federal Government of Nigeria
6.	UNIDO	United Nation Industrial Development Organization
7.	R & D	Research and Development
8.	SHP	Small Hydro Power
9.	ECOWAS	Economic Commission of West African States
10.	DOE	Department of Energy
11.	FEMA	Forum of Energy Minister's in Africa
12.	NEPAD	New Partnership for African Development.
13.	REA	Rural Electrification Agency
14.	MDG	Millennium Development Goal
15.	UNDP	United Nations Development Programme
16.	GEF	Global Environmental Fund
17.	GHG	Green House Gases
18.	RETs	Renewable Energy Technologies
19.	W.A	West Africa
20.	PRODA	Project Development Agency
21.	NASENI	National Agency for Science and Engineering Infrastructure.

1.0 INTRODUCTION / BACKGROUND.

7-Point Agenda of the Federal Government of Nigeria high points are wealth creation, improved lifestyles of the populace and improved national economy. Human Capacity Development and provision of Critical Infrastructure have been identified as the linchpins for actualizing these goals. For sustainable wealth creation to be achieved and for Nigeria to be among the top 20 economies in the world by 2020, the nation must cease to be a "dumping ground" for manufactured goods from all-over the world and join the rest of the advancing economies in the manufacture of goods for local consumption and export.

The development of cottage, small and medium industries and the manufacture of quality products at competitive prices depend on constant supply of reliable electricity and the utilization of Advanced Manufacturing Technology.

More than 60% of communities in Nigeria are still not connected to the National Grid. The cost of extending the grid is currently high, compared with the cost of installing offgrid electricity generation plants. Absence of electricity in rural areas is an indication of poverty and lack of developed infrastructure. This has promoted urban migration in search of employment and improved standard of living due to the presence of large, medium, and small scale industries that are heavily dependent on electricity.

Nigeria is blessed with a vast amount of water resources from which electricity could be generated. With Small Hydro Power (SHP) plants, electricity can be generated even from small streams and rivers. SHP plants are easy to install and manage. When used for stand-alone, decentralized electricity supply, it does not require very high investments in transmission lines since the end-users are close to the source of generation of the electricity.

1.1 **PROJECT BACKGROUND**

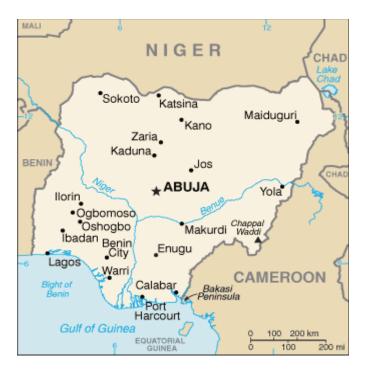
Nigeria is a coastline country in West Africa that got its independence in October 1960. The British Government built the first generating plant in Nigeria in Lagos in 1898. The generation, transmission Ordinance No 15 of 1959 vested distribution and marketing of electricity on the defunct Electricity Corporation of Nigeria (ECN). Later, the Niger Dams Authority was set up in 1962; in 1972 the Niger Dams Authority (NDA) and the ECN became merged by Decree No 24 of 27th June 1972 to give birth to the National Electricity Power Authority (NEPA). The Electricity Reforms Act of 2005 further gave birth to the Power Holding Company of Nigeria (PHCN), which is currently undergoing restructuring into business units as well as the National Electricity Regulating Commission (NERC).

More than 18 State Governments are already working towards the deployment of SHP for electricity generation in their states. In some states, the plan is to establish SHP plants in each of their Senatorial Districts and later to all their Local Government Areas. The Federal Government through its Rural Electricity Agency (REA) and Non-Governmental organisations are also working towards the deployment of SHP in selected sites all over the country.

Electricity generation in rural communities would increase and the need for productive use of the power generated (apart from lighting and domestic uses only) would also increase. The demand for the locally fabricated SHP turbine would increase. All these would result to an increase in the demand for skilled personnel in these areas.

1.2 Demographic Trends

By the last census in 2006, Nigeria had a population of 1,390Million with an annual growth rate of 3.0%, to make it one of the fastest growing populations in the world. With a total area approximately 923,768Km², Nigeria is the tenth largest country in the world and located on the Equator.


It is demarcated into 36states and a Federal Capital Territory, with Abuja as Capital. It is also by far the most populous – the National Population Commission (NPC) has estimated that the population of the country would be 150million, 154million, 154.8million and 235.6million in the years 2000, 2010 and 2025 respectively. In other words, the population of the country would triple in the next 20years. In order, therefore, to even maintain the current low standard of living and quantity of life, the country needs to double the number of schools, health facilities, food production, housing, water supply, electricity supply etc. in the next 25years. This poses a great sustainable development challenge to Nigeria, one of which is energy infrastructure.

1.3 UNIDO Initiative.

In order to increase the percentage access to electricity and to promote rural industrialization, there is a need for increased electricity generation. With the current high cost of generation due to importation of electromechanical equipment, there is a need for an increased local content in the deployment of SHP plants for electricity generation. Local manufacturing of SHP equipment would lead to lowered cost of SHP development, job and wealth creation.

In order to support its initiative to promote Small, Mini and Micro hydropower in Africa, UNIDO had established a Regional Centre for SHP in Abuja, Nigeria in 2005. This UNIDO Centre is mandated to provide technical assistance to African countries in developing and implementing their SHP projects targeted to access clean energy to rural areas and creation of income generation opportunities through productive activities.

Subsequently, UNIDO Regional Center in collaboration with ECOWAS Commission organized an EGM in SHP development for West Africa during 7-9 August 2007 with the objective of formulating a strategy for SHP development in West Africa. During the EGM, experts from 11ECOWAS member states recognized enormous potential for SHP development in the Sub-region for eradicating poverty in the rural areas. However, they identified lack of technical capacity in the area of small hydropower in West African countries and emphasized the need for UNIDO to provide necessary capacity building as well as local fabrication of Micro and Mini hydro equipment in West Africa and strongly recommended UNIDO's intervention in the transfer and adaptation of Micro hydro equipment technology to West Africa. Therefore, this intervention is intended to develop local capacity in the design and manufacture of SHP turbines and generator systems in a sustainable way so that technology is widely disseminated as a means of provision of rural energy for productive uses.

FIG 1.0 MAP OF NIGERIA.

Location of the Project Site.

City and State :	Enugu, Akure
Travel Duration from Capital :	5 hours by road.
Name of nearest Airport	Enugu and Akure
Travel from nearest Airport	1 Hour
Name of nearest Port	Lagos and Port Harcourt
Travel from nearest Port	5 Hours by road

Fig 2.0 MAP OF NIGERIA SHOWING ENUGU AND ONDO STATE

2.0 HYDRO TURBINES MARKET ANALYSIS IN NIGERIA

2.1 Economic Situation.

Nigeria is richly endowed with both human and natural resources. The economy depended for a long time, to a large extent on oil revenue, which accounted for 90% of foreign exchange earnings in 2002. However, agriculture remains the main stay of the economy as it accounts for 40% of GDP, employs over 70% of the workforce and provides 90% of the non – oil export earning (2)

Recent CBN reports show that economic growth in Nigeria, which averagely is below 3% per annum from 1996 to 1999, took an upward turn between 2000 and 2001. Growth increased from 2.8% in 1999 to 4.2% in 2001 and declined to 3.3% in 2002. However, since population growth averaged 3% per annum over the period, this improvement in GDP growth made little impact on the standard of living in the country.

Poverty in Nigeria is associated with high unemployment, poor governance, corruption, lack of accountability, gross violation of human rights, nepotism and a skewed income distribution; additional factors include poor infrastructure and impaired access to productive and financial assets by women and vulnerable groups. Poverty has a gender dimension as women are overrepresented among the poor due to subordinate status of women, traditional and socio-cultural practices, discrimination and lack of access to assets and financial services. The incidence of poverty has increased over time. Available data from the Federal office of statistics indicate that although the incidence of poverty declined between 1985 and 1992 but since then, it has been on the rise. By 1996 it was estimated that approximately 65.6% Nigerians (67.1million people) lived below the poverty line. Poverty was more pronounced in rural than urban areas with poverty rates of 69.8% and 55.2% respectively.

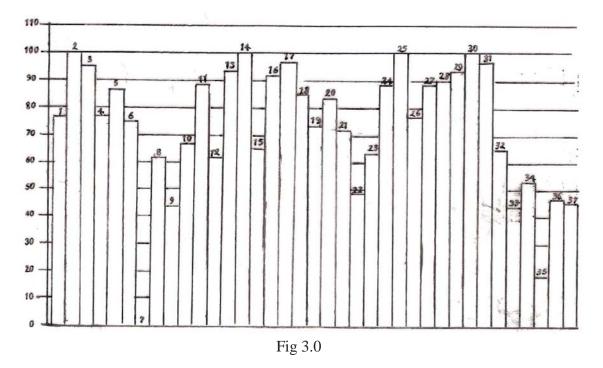
Poverty incidence in the country for 1980, 1985, 1992, were 28.1, 42.1, 46.3 and 65.5 percent respectively. A common feature of poverty in Nigeria is that it is largely Rural based. However, there is an increasing evidence of pauperization of the urban areas, for instance, while the number of the poor in rural areas fell sharply from 26.3million between 1985 and 1992, those in urban areas rose from 9.7million to 11.9million in the same interval.

2.2 Electricity Generation.

It is estimated that, on the average, consumers are cut off from grid electricity for 10hours everyday. This has compelled many consumers (mostly industrial) to procure electricity generating sets for private use. The high cost of spare parts and fuel for running these generators make it uneconomical and inconvenient for use. The distribution of households in the country by types of electricity supply is presented in Table 2.2, which shows that about 80% of the rural populations have no electricity, which partly explains why the standard of living in the rural areas has remained low with poor economic growth.

Type of Electricity	Urban	Semi - Urban	Rural
No Electricity	24.37	55.21	83.65
PHCN Only	73.32	38.80	13.24
Rural Electricity Only	1.85	5.99	2.81
Private Generator Only	0.23	0.00	0.29
PHCN/Rural Electricity	0.23	0.00	0.00

Table 2.0: Percentage of Households by Type of Electricity Supply.


Rural Electricity generated by other organisation apart from PHCN

Electricity is an essential instrument for industrial, social, and economic development. With a very expansive landmass, the Power Holding Company of Nigeria has enormous task of extending the grid electricity to all the areas. At present, the country has only about 11,000 kilometers of Transmission lines. In view of the cost of equipment procurement, rehabilitation and repairs and the high running cost of diesel generators, there is need to consider other electricity generation resources as an alternative option, particularly for the rural areas.

2.3 Rural Electrification

The nationwide rural electrification programme aimed at connecting all Local Government Headquarters (LGHQ) and some other strategic and important towns and villages to the national grid is very crucial to the overall development of the country in general and particularly that of the rural areas. It is pertinent to note that of all the vital infrastructures necessary for the upliftment of our rural areas, the provision of electricity supply is undoubtedly the most important. Rural Electrification is, therefore, the key to the transformation of our rural areas from mere producers of farm products and fetchers of wood to an agro-based community with a standard of living rising above subsistence level. It is, therefore, obvious that the success of the nationwide rural electrification is crucial to the realization of the objectives of the nation's development programmes. This is particularly true with the poverty Alleviation/Poverty Reduction Programme of the Federal Government. This statement underscores the reason why the present Administration has made nationwide rural electrification one of its cardinal objective programmes for implementation.

The National Electrification Programme implemented during the period 1989 – 1999 was able to complete 340 projects, while additional 110 projects were carried out from 1999 – 2006. Fig. 3.0 below shows the level of electrification in Nigeria.

1. Abia 2. Abuja 3. Adamawa 4. Akwa Ibom 5. Anambra 6. Bauchi 7. Bayelsa 8. Benue 9. Borno 10. Cross River 11. Delta 12. Ebonyi 13. Edo 14. Ekiti 15. Enugu 16. Gombe 17. Imo 18. Jigawa 19. Kaduna 20. Kano 21. Katsina 22. Kebbi 23. Kogi 24. Kwara 25. Lagos 26. Nassarawa 27. Niger 28. Ogun 29. Ondo 30. Osun 31. Oyo 32. Plateau 33. Rivers 34. Sokoto 35. Taraba 36. Yobe 37. Zamfara

2.4 Access to (Modern) Energy Services

In Nigeria, less than 30% of households are connected to the national grid. Due to poor services and the high cost of electricity provided by the National Electric Power Authority (NEPA) now Power Holding of Nigeria, (PHCN) Nigeria's sole monopoly, cooking and heating with electricity are limited to the affluent households that can afford standby generator. In the urban areas where LPG is available, it is very expensive and this has made its use unattractive to the majority. Kerosene prices are also very expensive and this has made its use unattractive to the majority. Kerosene prices are also very high in view of current deregulation in the downstream oil sector and the activities of middlemen in the distribution chain. On the whole, modern energy services account for less than 25% of fuel consumption in Nigeria's total fuel energy cost of cleaner modern energy sources. These traditional energy sources are generally inefficient and are of low quality and poor people's energy choices are limited, as they cannot afford to pay for the efficient modern energy services.

2.5 Market Potential

The major / key drivers for the Turbine market in Nigeria are population growth; government – sponsored programs such as NEEDS; MDG's; Rural electrification; access to rural energy; high cost of fuel; O & M related expenses associated with diesel based generator sets together with the unreliability of fuel supply. These factors are currently prevalent in the Nigerian economy and are the basis for fuel interchange / alternative fuels such as the Small Hydropower that operates on hydro turbines.

2.5.1 Renewable Energy Programme

The energy policy for Nigeria launched in 2005 has further been followed with an Energy master plan. The Federal Govt of Nigeria has a 10yr target for the contribution of RETs to the economy - (2007 - 2017).

The target in MW based on peak demand from SHP are 40(2007); 100(2008) and 400(2016). Planned Small hydro electricity project are shown in Table 2.6 below.

No of System	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Cumulative No. of	0	1	2	4	5	5	5	5	5	5
Systems.	0	1	3	7	12	17	22	27	32	37
(Ave.nominal power =	0	10	20	40	50	50	50	50	50	50
10MW),	0	10	30	70	120	170	220	270	320	370
Cum. power, MW										
Sys cost A @	0	15	30	60	75	75	75	75	75	75
US\$1500/Kw, \$m										
Sys cost B @	0	20	40	80	100	100	100	100	100	100
US\$2000/Kw, \$m										
Sys cost C @	0	25	50	100	125	125	125	125	125	125
US\$2500/Kw, \$M										
Sys cost A	0	1.95	3.9	7.8	9.75	9.75	9.75	9.75	9.75	9.75
@N130/US\$,bN										
Sys cost B	0	2.6	5.2	10.4	13	13	13	13	13	13
@N130/US\$,bN	0			10						
Sys cost C	0	3.25	6.5	13	16.2	16.2	16.2	16.2	16.2	16.2
@N130/US\$,bN					5	5	5	5	5	5
1000 Tons CO ₂ saved	0	13.1	26.2	52.5	65.7	65.7	65.7	65.7	65.7	65.7
(If natural gas used)		4	8	6						
	-	10.0	2 0.1							
1000 Tons CO ₂ saved	0	19.0	38.1	76.2	95.2	95.2	95.2	95.2	95.2	95.2
(If fuel oil used)		53	06	12	65	65	65	65	65	65

 Table 2.1:
 Small hydro Electricity Projection in Nigeria

Typical characteristics of some of the SHP designed for implementation are shown in Table 2.2

2.6 Hydro Sites in Nigeria

The SHP development programme conceived and implemented by UNIDO and Energy Commission of Nigeria has generated well over 200 identified potential sites at different levels of investigation / studies. More than 30% of the states have indicated interest in the development of potential sites in their different states.

Hydro sites, existing and those being developed are shown in Fig 4.0. The total number of identified sites for SHP development is over 200 across the country. A quick glance shows that about 20% of these sites are at advanced stages of investigations. However, Table 2.2 shows some investigated potential sites at corresponding level of investigation. The range of these sites, apart from the waterfall is (1.5-40) m, which falls squarely within the Crossflow turbine application range. The average capacity lies in the micro/mini scheme class, which is the type of scheme that meets the demand by rural communities from earlier studies carried out.

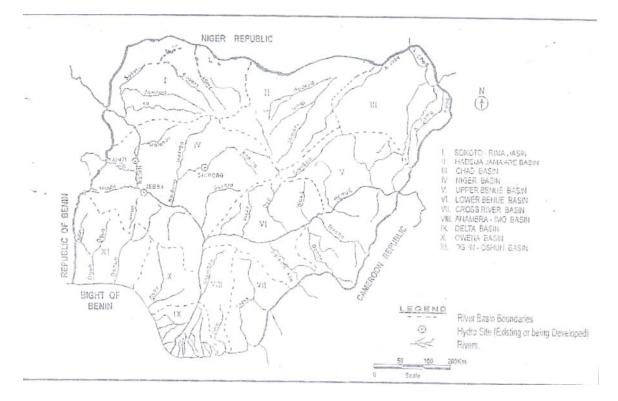


Fig 4.0 Nigeria River System and Basins

Table 2.2 Investigated	Potential SHP Sites
1 abic 2.2 mycsugateu	I Utential SIII Sites

S/N	Location/State	Town	LGA	Water	Discharge	Potential	Stage of
				Head	m ³ /s	Cap. (MW)	Investigation
1.	Jiba	Jiba	Jiba	18.0	290-400	31.3	Pre-
							feasibility
2.	Fajina	Ajiwa		12.5	400-5	30.0	"
3.	M/Fashi/Katsina	M/Fashi	M/Fashi	12.0	329-553	23.0	"
4.	Mairuwa/Katsina	Funta	Funta	8.0	350-550	16.8	"
5.	Gwaigwaiye	Funta	Funta	12.0	600-900	43.2	"
	/Katsina						
6.	Zobe/Katsina	Dutsinma		19.8	600-900	71.3	"
7.	Sabke	Mapadua		12.5	250-350	18.7	"
8.	Iddo/Osun	Iddo	Oriade	12.5	2.699	0.24	د ,
9.	Sepeteri/Oyo	Sepeteri	Shaki East	14.23	1.984	0.17	"
10.	Oke-adan/Oyo		Yaw South	16.0	2.245	0.22	"
11.	Erin-Ijesa/Osun	Erin-Ijesa	Oriade	230.0	0.910	1.3	< C .
12.	Owena/Ondo	Owena	Bolorunduro	22.5	7.79	1.1	67
13.	/Edo	Ugonoba	Uhunmode	10.0	8.09	1.49	66
14.	Itapaji/ Ekiti	Itapaji	Oye	21	2.00	0.30	DPR
15.	Eficghim/Cross	Ajassor	Etung	19	3.00	0.20	DPR
	River	_					
16.	Doma/Nasarawa	Doma	Doma	29	2.22	0.45	DPR
17.	Okinni/Osun	Okinni	Egbedore	20	12.80	1.90	DPR
18.	Ero / Ekiti			27	2.95	0.557	
19.	Numan/Adamawa			15.77	57.13	6.30	

20.	Ikpoba/Edo			8.40	25.19	3.20	
21.	Monkin/			18.00	3.17	0.90	
	Adamawa						
22.	Evboro/Edo	Benin	Ovia S.W	5.00	1.72	0.020	Feasibility
23.	Agih -2/Niger	Aboh		9.00			
24.	Ikun/Niger	Iknu		8.50			
25.	Itu/C-River	Itu		5.8			
26.	Erinle/Osun	Ede		10.5			
27.	Opeki/Oyo	Poeki		12.5			
28.	Konsi/Oyo	Ighono		10.0			
29.	Okugha/Oyo	Ayete		10.0			
30.	Yewa/Ogun	Egger		2.65			
31.	Yewa/Ogun	Yewa –		3.38			
		mata					
32.	Onitsha/Anambra	Onitsha		5.65			
33.	Ikeji Ile/Osun	Ikeji/Osun	Oriade	10.00	0.20	0.011	DPR
34.	Kwa falls/C-River	Aningeje	Akamkpa	25	4.7	0.70	Prefeasibilty
35.	Buinya Irruan/C-	Buinya	Boki	20	0.12	0.014	Prefeasibility
	River	Irruan					
36.	Bebi Strip/C-River			15	0.13	0.0120	Prefeasibility
37.	Umana Dam	Umana					
38.	Inyishi Dam/Imo						

2.7 Market Projection

A quick review shows the market windows for the project as Renewable Energy Programme; Rural Electrification Programme, SHP projects, the as well as the bulk potential sites already identified or investigated for which DPR are yet to be developed.

Overall, the estimated small Hydro Power demand (3) projected upto 2030 is shown in Table 2.3 This estimated potential is for sites already identified and yet to be studied, as well as those sites at advanced level of investigation.

However, a threshold of 740MW, which is for, investigated sites in Nigeria gives a revised potential as shown in Table 2.8

S/N	Year	Estimated	Demand	Estimated	Potential	Revised Potential	
		(mW)		(mW)		/MW	
1.	2000	190		500		100.0	
2.	2005	300		500		100.0	
3.	2010	500		1.500		300.0	
4.	2015	750		2,000		400.0	
5.	2020	1,300		2,500		500.0	
6.	2025	2,100		3,000		600.0	
7.	2030	3,315		3,500		700.0	

2.3 ESTIMATED NIGERIA SMALL HYDRO POWER DEMAND

Source Energy Commission of Nigeria

3.0 SELECTION OF SITE / INSTITUTION

The general features of an average Turbine consists essentially of four main components: the casing, the gate apparatus, the runner and the draft tube.

The production of these components simply involves the following mechanical activities: machining/assembly; working of spiral case, draft tube etc; Forging, Moulding and Casting. These activities require workshop facilities indicated in A-3.1

The equipment required for manufacturing these components, as well as the relevant tools are is shown in A- 3.2

It is obvious that in addition to the mechanical, the human resource (skills) as well its management is necessary in the manufacturing process. All these inputs contribute to, amongst others, the basic requirement for local manufacturing of the cross flow turbine.

It is equally important to state that the mechanical activities mentioned above are common to other useful items of the production and manufacturing sector of an economy. In the choice/selection of a site, it is necessary to carry out a survey of some identified R & D institution / organizations in the country.

3.1 Detailed Survey of Sites.

The following identified R&D institution or organization were visited one after the other, with a view of physically inspecting the facilities on ground; interact with the management and appraise the level of human skills within its operational capacities and activities.

- 1. Project Development Agency, Enugu (PRODA)
- 2. Hydraulic Equipment Development Institute NASENI (HEDI), Kano.
- 3. National Agency for Science and Engineering Infrastructure (NASENI) Idu-Karimo, Abuja
- 4. Engineering Material Development Institute NASENI (EMDI), Akure
- 5. Science Equipment Development Institute NASENI (SEDI), Enugu.

The detailed survey for each R&D institution / organization is shown in $A-3.3\,$

3.2 SELECTION CRITERIA

In the choice of an R&D institution/organization a scoring methodology was used. The technical requirements as well as human skills have been emphasized in the scoring points and shown in Table 3.0 below.

Table 3.0 SCORING ITEMS AND POINTS

1.	Workshop facilities available	10pts
2.	Equipment available	10pts
3.	Tools available	10pts
4.	Land / Premises	5pts
5.	Skills	10pts
6.	Organization structure	5pts
7.	R & D Facilities	5pts
8.	Duration of Activities Existence	<u>5pts</u>
	Total	<u>60p</u>

3.3 Scoring and Analysis

Scores allocated in line with criteria shown in Table 3.0 are shown in Table 3.1 below for all organizations surveyed. NASENI Headquarters coordinates the activities of the development institutes surveyed.

S/N	Scoring Items	PRODA	NASENI	NASENI	NASENI
			HEDI	SEDI	EMDI
1.	Workshop	6	6	8	8
	Facilities				
2.	Equipment	6	6	8	8
	available				
3.	Tools available	8	8	8	8
4.	Land /	8	8	8	7
	Premises				
	available				
5.	Skills	8	6	7	7
6.	Organization	4	4	4	4
	Structure				
7.	R & D	4	3	4	4
	Facilities				
8.	Existence	4	2	3	3
	Duration				
9.	Total	48	43	50	49

Table 3.1SCORING OF SURVEYED INSTITUTE.

All the institutes under NASENI are relatively young R & D institutes with modern machines. PRODA is much older with more obsolete machines. The two organizations NASENI and PRODA are comparatively strong for the project, implementation. However, NASENI /SEDI has the highest score of 50 pts and so selected.

4.0 TECHNICAL ANALYSIS

4.1 Basic Concept and Selection of Turbine.

Hydro – turbines are usually designed for specific applications and outputs, and services depending upon how much water is available every year. A good understanding of energy requirements and characteristics of water resources is essential for proper selection of hydro – turbine Scheme.

The selection of turbine is based on the head, the flow rate and output rating. The three categories of hydro schemes are:

- High head 150m above
- Medium head 20m to 150m
- Low head -2m to 20m

Low head schemes are generally Run - of – River Schemes with a low high barrage or weir across a river or canal.

An analysis of Table 2.2 shows the bulk of the sites to be exploited are in a head range of 2.65m - 29m with the exception of the waterfall (230m)

4.2 Types of Turbines

There are two common classifications of turbine. The reaction turbine and impulse turbine and they are dictated by the water flow action and structural features. It is further differentiated by the flow direction in the passage of the runner. The turbine may further be classified by its arrangement of shaft as vertical and horizontal, and by its feature as fixed blade and adjustable blade etc.

The classification of small turbine and its application head range are shown in Table 4 – 1 below: Table 4 .1 Small Turbine Classification

Energy Conv	S/N	Flow Direction	Head Range (m)
Reaction	1.	Tubular	2 – 15
	2.	Axial flow	3 – 30
	3.	Diagonal flow	30 - 120
	4.	Francis	30 - 150
Impulse	5.	Pelton	100 - 180
	6.	Turgo	20 - 300
	7.	Cross flow (Mitchell - Banki)	8 - 80

4.2.1 Justification of Cross – flow Turbine

The feature of the water characteristics of sites to be developed shows a large swing for low head turbines. In this head range only the Cross –flow in the impulse group and the Tubular, Axial flow in the Reaction group of turbines, but more of Tubular.

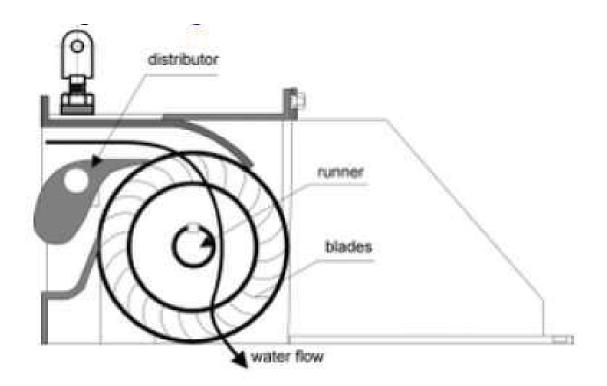
Comparatively, impulse turbines have free surface flow on the runners and rotate in air and not in water as the reaction turbines.

Impulse turbines convert all the net head into kinetic energy in a nozzle. Generally, the impulse turbines do not have draft tubes whereas the reaction turbines do. Since it makes sense to start such a project by designing simple, less complicated, small turbines and build up experience gradually, the choice is to start with an impulse turbine.

The energy generated is equally important in the choice of turbines. Most of the sites to be developed are below 500KW capacity. In the case of power output below 500KW, the Cross – flow competes well with Francis and Pelton turbines.

Similarly, turbines with relatively low power outputs are likely to be horizontally mounted and has a wide range of relative discharge $0.4 > Q/Q_1 < 1.0$

Hence, the Cross – flow turbine is recommended for ease of manufacture and 'leap – frogging' the technology for domestication in the Country.


4.3 Crossflow (Banki) Turbine.

The **Banki turbine** (also known as the **Michell**, **Crossflow** or **Ossberger** turbine) is a hydropower system similar in appearance to an over-shot water wheel. Unlike the water wheel, however, it uses a nozzle and blades instead of buckets. The "middle" of the Banki turbine is left open and the blades that would normally form the walls of the buckets are angled. It is, in effect, a "leaky" water wheel.

Water flowing into the top of the turbine not only spins the wheel by its weight, but as it flows past the blades and into the middle of the turbine, its direction is changed. This extracts additional power via Newton's Third Law. A venturi enhances this effect by funneling the water at a high speed onto the blades.

The Banki turbine uses concepts from both impulse and reaction turbine design. This allows it to perform well in a wide range of heads. The system is somewhat similar to the Pelton wheel in concept, but requires less engineering in the wheel itself.

The Banki turbine has lower efficiency than other turbine designs but enjoys a niche market for low cost and home made installations. A reasonably efficient turbine runner can be constructed from pipe sections that are slit to form the blades (70% - 80% efficiency at 10 feet of head). The venturi and associated plumbing may be fabricated with sheet metal tools. It is somewhat more complex than in an over-shot wheel, but by no means difficult. A locally made Crossflow (Banki) turbine that has same power as a large Diesel engine is within the means of most small and amateur workshops.

4.4 TURBINE DESIGN ISSSUES

As discussed earlier, the design of the turbine starts with the static head of water available. But first of all, let us look at the features of a Cross flow Turbine. It consists essentially of four main component; the casing, the gate, the runner and draft tube.

- i. Casing: Conventionally, the casing is spiral in shape. However, for low heads, the spiral casing can be dispersed with, and the turbine is placed in an open flume.
- ii. The GATE Apparatus: This consists of a ring of guide vanes, which control the direction and quantity of water reaching the runner. The guide vanes are arranged to swivel together based on an interconnected linkage system. Each vane is provided with a safety device such as shear pin, which will break if an obstruction prevents closure of the vane.
- iii. The Runner: This extracts the whirl components of water, converts it to rational energy and discharges the water with minimum whirl or minimum absolute velocity.
- iv. The Draft Tube: This is long tap eying pipe, which conveys the discharged water from the runner to the tailrace and recovers from it the kinetic energy. The simplest form of draft tube is conical in shape, with cone angle of 5° to 7°

4.4.1 RUNNER DESIGN

The design of the runner is based on:

- a. The selection of suitable runner coefficient which is a function of the specific speed.
- b. Consideration of velocity diagram.
- c. Consideration of changes of velocity in the runner passages.

The specific speed of a turbine is defined as

 $n^s = N$

Where $n^s = specific speed$

N = rotational speed of turbine rev/mm

- W = Power output of turbine
- H = effective static head of water

The runner coefficient defined as

 $\Phi = u$

 Φ = is the runner coefficient at a given point.

u = is peripheral velocity at that point

Charts are available to determine at various points on the runner as a function of ns, the specific speed at the inner and outer profiles and the water entry and water exit edges.

The actual runner dimensions are obtained by using the equation

 $D = \frac{60u}{LlN} - \dots - 1.0$

Where D is the diameter at the point considered.

Graphs also enable us to determine the height of the guide vane B

Consideration of the velocity diagram enables us to calculate the guide vane exit angle and the runner blade inlet angle.

The number of vanes can be determined based on the speed.

Having determined the dimension of the turbine runner, we must now look at the other critical areas of the designs. The runner must be supported by a shaft. To design the shaft, we must decide on the nature of bearing supports we need. It will be safe to assume that power out – take from the shaft is by means of a pulley to the gearbox and alternator.

For the bearing supports, we have a choice of one thrust bearing with two guide bearings or one tapered roller bearing with one guide bearing. If the turbine runner is not too heavy, the 2^{nd} alternative will suffice. But if it is too heavy, then it is best to use a thrust bearing with two guide bearings. With this decision, we can design the shaft, which is a straightforward calculation.

4.5 CHOICE OF MATERIALS AND MANUFACTURE METHODS

4.5.1 Turbine Runner:

The turbine runner can be cast integrally in plain carbon or stainless steel. One best practice is to cast the hub, and form the blades from steel plates. If it is desired, the surfaces could be protected by chrome plating. The blades are then bolted to the hub.

4.5.2 Shaft:

The shaft is machined from carbon steel bar stock – plan carbon steel. At this stage one machine shop and one foundry are sufficient.

4.5.3 Bearing Housing:

Sometimes, it may be difficult to obtain standard bearing locally. In that case, they can be made by casting and machining, or machining from bar stock. One area that needs special attention in the bearing and housing is the sealing and lubrication arrangement.

4.5.4 The Gate Apparatus:

The top and bottom discs can be made from mild steel plates. The same with the guide vanes. The top pins of the guide vanes rotate in either brass or Teflon bushes.

4.5.5 Pulley:

This will be machined from bar stock or may be produced by casting and machining.

4.5.6 Gear Box:

Where it is not possible to purchase a gear system with the right speed ratio, the gear system can be produced by machining.

4.6 Recommended Manufacturing Procedure

The following procedure is suggested for the actualization of the project:

- 1. Select site
- 2. Carry out hydrological and load surveys. Site capacity determination
- 3. Constitute turbine sub-team, and provide with data on head, power requirement and maximum water out take.
- 4. The team carries out the design up to the stage of working drawings and detailed methods of production. The team will also identify where each component will be made. At this stage one machine shop and one foundry are sufficient. The design could be completed within one month.
- 5. The components are manufactured with adequate supervision by the team two months
- 6. The components are subjected to necessary quality control and are assembled and tested in-house.
- 7. At the design stage, the basic requirement for flume, the turbine support structure and the draft tube will be determined, and given t o the site design team. The data should include foundation and bolting down requirements.
- 8. When the site structures are ready, the turbine will be installed on site, and basic test runs will commence.
- 9. On successful commission of the power plant, seminars and workshops on the process and lessons learnt will be organized to train more potential small turbine manufactures.

4.7 Work plan Spreadsheet

A work plan on spreadsheet is attached – A- 4 and made up of the following major activities:

Identification and Preliminary Assessment of facilities. Team of Experts Visit Bidding, Selection and Award of contacts Additional facilities Procurement Real and Model SHP Components Production of Selected SHP components Capacity building: Training the Trainers Fabrication of SHP components parts Assembly and Testing Commercialization.

4.7.1 Assessment of Facilities

A basic requirement of workshop facilities and equipment/tools for designated workshops as shown in 3.0 was used by RC in carrying out a detailed survey of facilities for the R & D institutions listed below:

NASENI (HEDI), Kano NASENI (SEDI), Enugu PRODA Enugu NASENI (EMDI), Akure

4.7.2 Team of Experts Verification

A brief report on surveyed sites shows inadequacy in specifications of some equipment as well as the functional capacity. This prompted a revisit to the following institution's location:

NASENI (HEDI), Kano NASENI (SEDI), Enugu PRODA, Enugu NASENI (EMDI), Akure

The recommendation by the team of experts for additional facilities is shown in A - 4.2The estimated cost of this activity is 5,000USD for 14days work duration.

4.7.3 Bidding, Selection and Contract Award

In line with the Due Process Regulations in Nigeria, it is necessary to prepare a bidding document; publicly advertise the intention of procurement; open and assess submitted bids, select winners and award the contract for supply of the items bides. The duration for the activity is 30days with an estimated cost of 5,000.00USD

4.7.4 Procurement of Additional Facilities

The procurement, shipment, delivery to project site, installation and testing of these additional facilities is projected for 6 weeks at an estimated cost of 1,000,000.00 USD.

4.7.5 Real Model SHP Component Procurement.

In order to facilitate smooth production and training, the need to procure real and model SHP equipment becomes important and crucial. It is projected that identification; procurement and shipment should take 35days at an estimated cost of 60,000:00 USD.

4.7.6 SHP Component Production.

In establishing and specifying standards to be adopted, existing documents such as IEC/TC-44, AHEC and IN-SHP should be of immense value.

These specified standards will conform to international standards and ease the preparation of relevant engineering drawings, as well as the preparation of the manufacturing layout. These activities are projected for 60days at an estimated cost of 10,000: 00 USD.

4.7.7 Training the Trainers

It is planned in the transfer of this technology; to train identified experts outside Nigeria and on return commission them on the local fabrication of hydro turbines.

In this respect UNIDO has put in place plans for the above and to be implemented as soon as firm commitment is made by all parties involved in the project. This activity primarily involves capacity Building in SHP Equipment Manufacturing. It is projected to cover a period of 65days at an estimated cost of 54,000:00USD

4.7.8 Fabrication of SHP Components

The model SHP (sample) component parts, the manufacturing layout, and test equipments once in place at the designated workshop, signals commencement of fabrication. Once the components are fabricated, testing follows and then certification. The requirement and tolerance for each component part of SHP is given in detail in (6). The projected duration for this activity is 42days with an estimated cost of 69,000:00USD

4.7.9 Assembly and Testing

The certified components parts are then moved to the designated workshop for assemble into integrated SHP equipment. The SHP equipment performance is then established as functioning equipment on a potential site earlier developed for same capacity of equipment. The duration for this activity is projected as 29days at an estimated cost of 10,000:00USD.

4.7.10 Commercialization

A business plan is drawn up once the performance test is okay for the SHP equipment manufactured. An investor's forum is then planned and implemented to commence the process of commercializing the product. The commercialization activity is projected for 24 days with an estimated cost of 25,000:00USD

4.7.11 Project Implementation Meetings

As it is common, with all profits, it is necessary to hold regular, monthly meetings once the project commences. This provides the unique opportunity of nipping in the bud, some exigencies/issues/matters that have not been considered in the overall planning and design of the project. 11no meetings are planned for the whole project implementation duration at an estimated cost of 550:00 USD per meeting totaling 5,500:00USD.

4.7.12 Project Implementation Cost.

The Technical Analysis discussed above gives a project implementation cost estimate of 1,253,000:00 USD for an implementation period of 378days – Table 4.2

Table 4.2 PROJECTED MANUFACTURING COST ESTIMATE AND DURATION.

S/N	Activity	Estimated Cost	Duration Remarks
		(USD)	(Days)
1.	Facilities Assessment	10,000:00	25
2.	Expert Team visit	5,000:00	14
3.	Bidding / Contract Award	5,000:00	30
4.	Procurement of Additional facilities	1,000,000:00	44
5.	Procurement of model SHP	60,000:00	35
6.	Design of SHP components (Engineering	10,000:00	60
	drawings)		
7.	Training of Trainers	54,000:00	65
8.	Fabrication of SHP Components	69,000:00	42
9.	Assembly and Testing	10,000:00	29
10.	Commercialization	25,000:00	23
11.	Project meetings	5,500:00	11
	Total	1,253,000:00	378

5.0 **Financial Analysis:**

The financial analysis was prepared using the Break-Even, Net Present Value (NPV) and Payback Period methods..

	Level 1	Level 2	Level 3	Level 4
Turbines (Qty)	1	2	3	4
Turnover (NGN	4,800,000	9,600,000	14,400,000	19,200,000
Fixed Cost	2,356,000	2,356,000	2,356,000	2,356,000
Variable Cost	2,746,000	5,492,000	8,238,000	10,984,000
Total Cost	5,102,000	7,848,000	10,594,000	13,340,000
Margin	(302,000)	1,752,000	3,806,000	5,860,000

Table 5.1Break-Even Analysis

<u>Interpretation</u> Our fixed cost was arrived at after adding up the following: investment cost depreciated (straight line) over 30 years, engineers salary cost. Other costs were assumed to be variable as they have a direct relationship with quantity produced. With the foregoing assumptions the project reported a breakeven quantity of 2 turbines annually.

	30,360,000	NGN	Selling Condition			
Capital Cost per T	337,333	NGN	Selling Price	4,800,000	NGN/Turbine	
Capital Cost per T	urbine installed capacity	2,811	US\$	Turnover	1,200,000	NGN/month
	120	NGN	Increase	8%	Per Annum	
Plant C	3	Turbine	Capacity (30yrs)	90	Turbines	
	2	%				
Average Annual Inflation		8	%			
Average Interest/Discount rate		12	%			
Service Life		30	years	NPV	5,004,891	NGN
O&M/Turbine		4,030,000	NGN/turbine	FIRR	13.38%	

5.2 <u>NPV Analysis</u>

Interpretation: With a discount rate of 12% and a life span of 30 years, our projected cash flow is worth NGN35.4 million today, which is higher than the initial NGN30.4 million paid in order to start the project. The resulting NPV of the above project is NGN5 million which means the project will receive the required return at the end of the project. Therefore pursuing the above project will definitely be an optimal decision.

5.3 Payback Analysis

Total Project Cost	30,360,000	NGN
1 US\$ =	120	NGN
Production/Annum (Year 1)	3	Turbine
Payback Period	7.75	Years

<u>Interpretation</u>: With a project cost of 30.4 million and a varied net cash flow as shown in the attached table the project would be completely paid for in the 9^{th} month of year 8^{th} , otherwise stated as 7.75 years.

6.0 SUSTAINABILITY PLANS

When the local people in the communities are involved in the development of Small Hydro projects and the local content of the projects increases, installation costs are reduced. Security of equipment and investment are also guaranteed, as such are viewed as community investment. Examples from Kenya and other developing countries like Peru and Sri Lanka have shown that Small Hydro projects can be **self sustaining** and profitable.

Measures already in place, policy – wise, institutional framework, regulatory mechanisms e.t.c. are summarized as:

- Policy and Targets for SHP contribution to the Power Vision of Nigeria by FGN
- Establishment and nurturing of appropriate and dynamic Science and Engineering Infrastructure base for achieving home initiated and home sustained industrialization through the development of relevant processes, capital goods and equipment necessary for job creation, national economic well being and progress by NASENI.
- UNIDO RC SHP in Africa, Abuja established with the mandate of providing technical assistance required for the deployment of SHP for electricity generation in the African sub region.
- Training of trainers by UNIDO's technical partners who will train private entrepreneurs for quick results and commercialization of product (Turbine) SME
- Producing under license of EU Company for competitiveness in the international and regional markets.
- Low production cost for competitive pricing
- Continuous Sensitization and awareness creation of the communities on benefits of SHP towards barriers removal
- Mechanism for Productive energy uses of SHP plants as demonstrated by UNIDO Pilot SHP projects in Enugu and Bauchi.
- Education Information dissemination of benefits of SHP to communities on regular basis.
- Electricity Act 2005 encouraging Public Private Participation (PPP) as well as Independent Power Production (IPP)
- Scaling up, replicating and mainstreaming as tools for linking micro level energy activities to macro level national priorities e.g. NEEDs II, NAPEP, MGD etc
- Markets creation for SHP through new financing options Local funds, aids and grants, foreign direct investment (DFID,WB,A_FDB) and Carbon financing.
- NATIONAL Energy Policy (NEP), Energy Master plan (EMP) and regulatory framework (NERC)
- Appropriate financial mechanism for scaling up SHP projects under consideration by FGN
- South South Cooperation encouraged by UNIDO.

7.0 Conclusion

African countries have significant hydropower and specifically SHP sources which if exploited can contribute greatly to the overall energy needs of the continent. Exploiting these resources will require overcoming the major technical, institutional and financial barriers. However, the significant lesson for countries in Africa is to scale-up the SHP in the continent. Presently, the continent has the highest rate of return on investment and this feature should be fully exploited for the development of small hydropower.

Sustainability plans for the project must recognize and put in place the following:

Regulatory framework – Predictable Stable investment framework Long – term strategic policy commitments – Govts Identifying indicators that drive sustainability of clean energy investments Stabilizing these indicators to allow sustainability returns Engaging stakeholders – statutory, non – stability and public consultation.

Energy is central to sustainable development and poverty reduction efforts. It affects all aspects of development – social, economic and environmental – including livelihood access to water, agricultural productivity, health, population levels, education and gender – related issues.

World leaders have pledged to achieve the millennium Development Goals, including the overarching goal of cutting poverty in half by 2015. Meeting the M.D.G will require concerted international efforts to bring about major increases in people's access to modern energy services in D.C.

REFERENCES.

- 1. Ogunlade R; Davidson and Michal Conteh, Energy and the M.D.Gs in Africa, Technical Paper for M.D.Gs
- 2. Esan Ayodele. Afolabi; Nigeria country Paper "Access to Energy Services for Rural and Peri Rural Population for the Achievement of M.D.Gs, 2006."
- 3. FGN/FMPS Renewable ENERGY Master plan for Nigeria
- 4. Tong. Jiandong and Petr. Fleischer, Small Hydraulic Turbine, IN-SHP,2000
- 5. UNDP, Expanding Access to modern Energy Services Replicating, Scaling up and Mainstreaming at the local level.
- Esan. Ayodele Afolabi, UNIDO Regional Centre and Small Hydro Power Development in Africa, International conference on Renewable Energy in Africa, Dakar, Senegal, 16th – 18th April, 2008.
- Ogunlade. R Davidson, Scaling up markets for Renewable Energy in Africa, "International Conference on Renewable Energy in Africa, Dakar, Senegal, 16th – 18th April, 2008.

WORKSHOP REQUIREMENT

- 1. Machine shop
- Working shop 2.
- Forging shop Foundry shop Repair shop 3.
- 4.
- 5.
- Substation 6.
- 7.
- Electrical shop Quality Control shop 8.

A – 3.2

REQUIRED MANUFACTURING EQUIPMENT

- 1. Circular saw
- 2. Hand saw
- 3. Centre Lathe Width 900mm min Height 250mm min
- 4. Milling machine
- 5. Planning/ shaping machine
- 6. Arc welding equipment
- 7. Boring machine
- 8. Drilling machine
- 9. Grinding machine
- 10. Bending machine / Press
- 11. Gas cutting equipment
- 12. Shearing machine

REQUIRED TOOLS.

- 13. Hammers
- 14. Screw drivers
- 15. Allen key set
- 16. Open spanner set
- 17. Ring spanner set
- 18. Socket spanner set
- 19. Files, chisels
- 20. Centre punch
- 21. Vernier calipers
- 22. Puller
- 23. Vice etc.

A - 3.3

DETAILED SURVEY OF FACILITIES FROM SMALL HYDRO TURBINE MANUFACTURING IN NIGERIA

INSTITUTION: PRODA, ENUGU. TYPE OF WORKSHOP : FABRICATION WORKSHOP DATE: 23/7/08

GAI	DESCRIPTION OF					AVAILABLE
S/N	EQUIPMENT Universal	SPECIFICATION/CAPACITY	APPLICATION Drop forging and	MAKE/MODEL Bombay Machine	STATUS	SKILLS
1	Punching Machine	50 tonnes	punching of holes	Company, India	Good	
1	Round Rolling		Rolling of angles	Hassleholm,	0000	
2	Machine	14cm ³	and bars	Sweden	Good	
3	Brake Press	30 - 70mm		Hamburger, Germany	Good	
4	Universal Shearing/Punching Machine	45kpa/mm	Shearing/punching of holes of thick guages metal	Stogerel, Czechoslovakia	Good	
5	Power Guidotine	4mm guage	Shearing of sheets and metal plates	Albertstahl Maschinenfabrik Stuttgart	Good	
6	Heavy duty Pyramid Rolling Machine	3700 x 13	Rolling of thick plates	Herkulus Watzler	Good	
7	Pillar Drilling Machine	32mm maximum diameter	Drilling operations	Elha Hovelhife Westf	Good	
8	Variable Speed Pillar Drilling Machine	90kg/mm2; 32mm maximum hole	Drilling of holes	Promyslovy Kombimet Dacice	Good	
9	Power Pitch Rolling Machine	Maximum 3mm guage	Rolling of small sheets	England	Good	
10	Manual Shearing Machine	Maximum of 2mm guage, 8 standard wire guage, 42kg/mm2	Shearing of sheets of metal	England, Edward and Co.	Good	
11	Vertical Drilling Machine	Maximum hole 13mm	Drilling of holes	Associated British Machine tools	Good	
12	Various Welding Machine (4Nos)	Maximum guage (8)	Arc welding of metals	Various Company Germany	Good	
13	Oxy-acyteline Welding Equpment (6 Nos)	Welding Kp to 6mm thick plates	Welding/thermal cutting of metals	Gloor, England	Good	
14	Horizontal Planning Machine	Up to 10ft length	Surface planning of metals	Bombay Machinery Company India	Good	
15	Tic Welding Equipment	AC 50 - 230amps DC 56- 21amps	Aluminum and alloy weldings	BOC England	Good	
16	Seam Welding Machine	185wg	for welding of water tight joints	Bombay Machinery Company India	Good	
17	Surface Grinding Machine	Continous (max. length of bay - 6ft)	Grinding of Surfaces Skill - 4	Bombay Machinery Company India	Good	Overall 4

DETAILED SURVEY OF FACILITIES FROM SMALL HYDRO TURBINE MANUFACTURING IN NIGERIA

INSTITUTION : PRODA, ENUGU. TYPE OF WORKSHOP : QUALITY CONTROL DATE: 23/7/08

	1		1	1	1	
S/N	DESCRIPTION OF EQUIPMENT	SPECIFICATION/CAPACITY	APPLICATION	MAKE/MODEL	STATUS	AVAILABLE SKILLS
0/11	LQUIIMLIT		For		SINICS	SILLS
	Metallurgical		Metallographic	NIKON Optiphot		
1	Microscope	x1000 (Magnification)	Analysis	Japan	Good	
			For Specimen			
2	Specimen Cabinet	10 cabinets	Storage	Buehler	Good	
	1		For			
	Microscope		metallographic			
3	Camera	DK - 81	photomicrograph	Buehler Coventry	Good	
			For Sieve	Endecotts,		
4	Sieve Shaker	Octagon 200	Analysis of Sand	England	Good	
	Specimen					
	Mounting Press		For Specimen			
5	(Moulding Unit)	6000 psi	Mounting	Buehler England	Good	
			For testing			
	Sand Permeability		Permeability of		~ .	
6	Tester	2450 x 240v x 1Amp	sand	Ridsdale England	Good	
_	Weighing Scales	2000 1100	For Weighing of		G 1	
7	(Big and Small)	2000g and 100g	Specimen	Ridsdale England	Good	
	A (For automatically			
8	Autopolisher	12 modules	polishing of	Duchlan England	Good	
8	(Mass)	12 modules	specimen For Polishing od	Buehler England	Good	
9	Manual Polisher	4 stages	Specimen	Buehler England	Good	
7		4 stages	For Cutting of	Duemer England	0000	
10	Abrassive Cutter	Diameter 120mm disc	Specimen	Buehler England	Good	
			For devlopment			
	Darkroom Photo		and printing of			
	Development and		metallographic			
11	Printing		pictures	Buehler England	Good	Overall 5

DESCRIPTION OF **AVAILABLE** S/N EQUIPMENT SPECIFICATION/CAPACITY APPLICATION MAKE/MODEL **STATUS** SKILLS Wood Circular T. Robinson & Saw - Heavy duty 18mm thickness Cutting of Woods sons England Good 1 Wood Surface Smoothing of **Plaining Machine** Wood Surfaces Guillet England Good 2 18mm thickness Continous Plaining of wood Universal Wood 3 Plaining 12mm thickness surfaces Guillet England Good Band-Saw Wood General T. Robinson & wood 4 **Cutting Machine** 30 inches cutting sons England Good Punching of holes T. Robinson & Moticing Machine for wood joints 5 25mm - 100mm sons England Good Circular wood Radial Arm-Saw 24 inches travel length cutting De Walt England 6 Good Wood - Cutting HOBENLLE 7 6500 upm Plaining of wood ZUSATZGERAT Good M/c ALLOSA Willian 8 Black-Smith Forge 1440rpm Forge work AlldayEngland Good BROOMWADE Compresses air 9 Air Compressor 300kgkm2 (115 psi) supply England Good Overall 4

INSTITUTION: PRODA, ENUGU. TYPE OF WORKSHOP : PATTERN SHOP. DATE: 23/7/08

DETA	DETAILED SURVEY OF FA	FACILITIES FOR SI	CILITIES FOR SMALL HYDRO TURBINE MANUFACTURING IN NIGERIA	MANUFACTURING	JIN NIG	ERIA
INST	INSTITUTION: HEDI-KANO.		TYPE OF WORKSHOP: MACHINE SHOP DATE: 16/7/08	ATE: 16/7/08		
N/S	DESCRIPTION OF EQUIPMENT	SPECIFICATION /CAPACITY	APPLICATION	MAKE/MODEL	STA TUS	AVAILABL E SKILLS
1	LATHE MACHINE	1.0M Lenght 15" Swing	TURNING,THREADING, BORING	DEAN SMITH & GRACE, ENGLAND	Good	
	HORIZONTAL		CUTTING OF GEAR.SLOTS.KEYWAY			
7	MILLING MACHINE	90cm	۲D	ELLIOT,ENGLAN D	Good	
3	SHAPING MACHINE	40cm	CUTTING OF INTERNAL KEYWAYS	ALFA	Fair	s
4	RADIAL DRILLING MACHINE	47.5mm (max. drill bit)	DRILLING OF HOLES,BORING AND REAMING	MAS, Czechoslovakia	Good	пвізіппээТ 5
5	LATHE MACHINE	0.6m	TURNING OF SMALL COMPONENTS LIKE SLEEVES,BUSHING ETC.	HUNGARY	Good	
9	LATHE MACHINE	2m long, 16" SWING	TURNING,THREADING	GRAHAM &NORMANTON	FAIR	
٢	MOBILE CRANE	5 TONS			FAIR	

A – 3.4

DETA	DETAILED SURVEY OF FACILITIES		ALL HYDRO TURBINE	FOR SMALL HYDRO TURBINE MANUFACTURING IN NIGERIA	NIGERIA	
ITSNI	INSTITUTION: HEDI-KANO . TYPE OF). TYPE OF WORKS	WORKSHOP: FOUNDRY DAT	DATE: 16/7/08		
S/N	DESCRIPTION OF EQUIPMENT	SPECIFICATION /CAPACITY	APPLICATION	MAKE / MODEL	STATUS	AVAILABL E SKILLS
1	ROTARY FURNACE	100kg(0il fired)	melting of ferrous and non ferrous metals	EMDI, Nigeria	Good	
2	TILTING FURNACE	100kg(0il fired)	melting of non-ferrous metals	EMDI, Nigeria	Good	
3	DIE CASTING MACHINE		casting of small non- ferrous components	TECHNOCRAT INDIA	Good	
4	ELECTRIC HEARTH FURNACE (2 Nos.)	30kg (coal fired)	melting of non-ferrous metals	Locally made, Nigeria	Good	
5	METAL MOULDING BOXES	various sizes	for mould making	Locally made, Nigeria	Good	
9	WOODEN MOULDING BOXES	various sizes	for mould making	Locally made, Nigeria	Good	snsisindos
L	SPRING BALANCE	50kg (max)	weighing metals	Germany	Good	L†
8	SAND MIXING ACCESSORIES	lot	sand mixing for mould making	Locally made, Nigeria	Good	
6	MOULD MAKING TOOLS	lot	mould making	Locally made, Nigeria	Good	
10	LADDLES	20x30kg	for collecting,holding and pouring of molten metal into mould	Locally made, Nigeria	Good	
11	DIESEL TANK	105 litres	for storing of diesel used for firing	Locally made, Nigeria	Good	
12	USED ENGINE OIL TANK	105 litres	for storing of used engine oil for firing	Locally made, Nigeria	Good	

Good	Good				
	Locally made, Nigeria Good				
used during melting and pouring of molten metal anto moulds	For drying moulds ready for casting				
lot	Kerosine type				
TOOLS AND ACCESSORIES USED DURING MELTING AND POURING OPERATIONS	BLOW LAMP				
14	15				

DETA	VILED SURVEY OF]	FACILITIES FOR SMA	DETAILED SURVEY OF FACILITIES FOR SMALL HYDRO TURBINE MANUFACTURING IN NIGERIA	MANUFACTURING	IN NIGERIA	
ITSNI	INSTITUTION: HEDI-KANO. TYPE OF	IO. TYPE OF WORKSH	WORKSHOP : PATTERN SHOP. DATE: 16/7/08	DATE: 16/7/08		
	DESCRIPTION	SPECIFICATION/				AVAILARL
S/N	OF EQUIPMENT	CAPACITY	APPLICATION	MAKE/MODEL	STATUS	E SKILLS
	Portable drilling			D72605 Bisigen		
1	machine	13mm dia	Drilling	Germany	Good	
	Wood lathe					
2	machine	230 X 800mm	Turning	Ratatein Hungary	Good	5
			cutting, planning $\&$			ensic
З	Planing machine	300mm width	riveting	PE Germany	Good	oindo
	Portable finishing			Colt Power Tool,		ooT 6
4	sand		Sanding	Germany	Good	;
				Colt Power Tool,		
5	Jig sawing machine	55mm Dia	Sawing curve	Germany	Good	
9	Spraying Machine	3kw	Spray painting	1JSM75/15	Good	

IINSTIT						
-	INSTITUTION: HEDI-KANO	TYPE OF WORKSHOP:	DF WORKSHOP: FABRICATION SHOP	DATE: 16/07/08		
	DESCRIPTION	SPECIFICATION/		MAKF/	STA	
S/N	OF EQUIPMENT	CAPACITY	APPLICATION	MODEL	SUT	AVALAIBL E SKILLS
			Press fitting during	Marta-Weike,		
1	Hydraulic press	6 tons, M30 1675	assembly	Frankfurt	Good	
2 I	Electric power saw	any thickness	for cutting materials	Klacger	Good	
			mekting of non-ferrous	Locally made,		
3 I	Electrc Hearth	Non-ferrous metals	metals	Nigeria	Fair	
4	Pillar Drilling machine		for drilling jobs	Femipari Vallalat	Good	
5 (Grinder		grinding jobs	Bosch	Good	
				Locally made,		s
6 1	Manual Shear	3mm	Cutting of metal sheets	Nigeria	Good	cians
				K.Strauss		ində
				Equipment,		эT Є
<i>L</i>	Arc Welding machine	250A	welding jobs	Germany	Good	
8	Arc Welding machine			Scema arc welding	Good	
				Koventa Podnik		
		\mathcal{O}		mistriko pranyshu		
6	Air Compressor	7amps 29kv 220v	General air supply	Ceska Trebera	Fair	
				Machinet abrick it		
				Jorg Amersoft,		
10 (Guillotine	2mm	cutting of metal Sheets	Holland	Fair	

URING IN NIGERIA	VORKSHOP DATE: 25/7/08	MAKE/MODEL STATUS AVAILABLE SKILLS	ly Good	aly Good	ly Good	Good	y Muller, Fair	Jones-Shipman Good Fee	Gemany Fair	TAY SHIN Machinery Works, Good China	ndia Good
NUFACT	ATION V	MAKF	SIP, Italy	of BOC, Italy	SIP, Italy	Chinese	g W.Paul Germany	Jones-Shipma 540, England	Interkrem Machine,	TAY Machir China	y BFW, India
VDRO TURBINE MA	MACHINE/FABRIC	APPLICATION	Spot Welding	Cutting thick metal sheets and welding of non-ferous metals	General Welding	Cutting Metal Sheets	Press fitting duing assembling	Grinding flat Surface	Drilling holes	Shaping Metals	Milling jobs such as slots, end miling, key
DETAILED SURVEY OF FACILITIES FOR SMALL HYDRO TURBINE MANUFACTURING IN NIGERIA	INSTITUTION: EMDI, AKURE. TYPE OF WORKSHOP : MACHINE/FABRICATION WORKSHOP DATE: 25/7/08	SPECIFICATION/ CAPACITY	380V, 50A	40Bar-Acetylene 300Bar- Oxygen	500A	3 x 1200mm	280mm(max.workpiece height), 3kw	7" (2880rpm)	2.2kw (32mm maximum drill bit size)	600 x 400 x 300mm	500 x 100 x 250mm
JLED SURVEY OF	TUTION: EMDI, AK	DESCRIPTION OF EQUIPMENT	Spot Welding Machine	Gas Welding Machine	Arc Welding Machine	Guillotone	Eccentric Press	Surface Grinding Machine	Pillar Drilling Machine	Shaping Machine	Vertical Milling Machine
DETA	INSTI	S/N	1	5	3	4	5	6	L	×	6

A - 3.5

Good	Good	Good	Good	Good	Good	Good	Good	Good	Fair
ZMM SLIVEN	HUICHON-5, Korea	Hobby Matt BFE 65, Baujahr	OMRON, Japan	SWWCO, Nigeria	SHIMATO, MADRAS	Nigeria Machine Tools (NMT),NIGERIA	Clark Metal Work, England	DONJIN, Korea	CHIN SHIN, China
Turning, boring, facing, threading.	Turning, boring, facing, threading	Turning,boring of small components	Turning, facing	Drilling and name plating	Grinding tools	Grinding tools	Drilling and milling	heavy duty cutting	Turning, boring, facing, threading
1.0m length, 250mm Swing	1.5m length	0.3m length	150mm length 50mm swing	3250 rpm	0.7 kw, 2,800 rpm	Minigrind GP-30	25mm drilling 13mm endmilling 63mm facemilling	150mm height/diameter of workpiece, 1.5kw	1.0m length, 250mm swing
Universal Lathe Machine	Universal Lathe Machine	Mini lathe/driling machine	Mini lathe machine	Engraving Machine	Tools grinding Machine	Pedastal Grinder	Drilling/Miling Machine	Power saw	Universal Lathe Machine
10	11	*12	*13	*14	*15	16	17	18	19

						AVAILABLE	SKILLS						sue	isiı	มนุว	D9 T	2 5				
Good	Good			VIGERIA			SUTATUS			Good		Good		Good		Good			Good		Good
ESAB, Ukraine	KITCHEN & WADE, ENGLAND			UFACTURING IN N	///08		MAKE/MODEL	MAHIMA	MELBOURNE,	AUSTRALIA	LOCALLY	FABRICATED	LOCALLY	FABRICATED	LOCALLY	FABRICATED			EMDI AKURE	Nigeria Machine	Tools (NMT),NIGERIA
Welding of Metal	Drilling			(DRO TURBINE MAN	: FOUNDRY DATE: 25		APPLICATION	MELTING CAST	IRON,STEEL &	ALLOYS	LIFTING OF	MATERIALS	MIXING OF	MOULDING SANDS	GRINDING OF	FETLING		MELTING OF CAST	IRON		MELTING NON- FERROUS METALS
38A -180A	40mm drill	na tonie	STUDI BL	DETAILED SURVEY OF FACILITIES FOR SMALL HYDRO TURBINE MANUFACTURING IN NIGERIA	INSTITUTION : EMDI, AKURE. TYPE OF WORKSHOP : FOUNDRY DATE: 25/7/08	SPECIFICATION/CAPACI	IY			150kg x 2		2TONS		250KG		1400rpm			100KG & 10KG		80KG
Arc Welding Machine	Radial Drilling Machine	Machinae for chamanin	Machines IOI Shai pennig WUIS	VILED SURVEY OF	TUTION : EMDI, AK	DESCRIPTION	UF EQUIPMENT	INDUCTION	FURNACE (2	Nos.)		CRANE		SAND MIXER	PEDESTAL	GRINDER	ROTARY	FURNACE (2	Nos.)		CRUCIBLE FURNACE
20	21	*		DETA	INSTI		N/N			1		2		ю		4			5		9

Good	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good
AVERY, ENGLAND	UTILIN GAS	BDC1280576, BULGARIA	DIGICARB 2, LEEDS	LEEDS		EMDI AKURE	EMDI AKURE	SHANDONG GONGYOU GROUP, CHINA	TJ212/2, CHINA	MLQ 343
WEIGHING	DRYING OF MOULDS	HEAT TREATMENT	ANALYZING MOLTEN CAST IRON MELT	MEASURING TEMPERATURE OF MOLTEN METAL	MEASURING TEMPERATURE OF MOLTEN METAL	AUSTEMPERING	MELTING OF CAST IRON	CUTTING WOOD	CUTTING OF WOOD	PLANING AND THICKNESS
250KG	33.1 KG	1200°C	1370°C	400°C	1700°C	1000°C	1500°C	410mm x 200mm THICKNESS	105mm CAPACITY	300mm
WEIGHING SCALE	MOULD DRYING EQUIPMENT	(3	CARBON EQUIPMENT ANALYZER	DIP PYROMETER	OPTICAL PYROMETER	SALT BATH FURNACES (2 Nos.)	250KG ROTARY FURNACE	BAND SAW	12" TABLE SAW	WOOD PLANING & THICKNESSING MACHINE
7	~	6	10	11	12	13	*14	**15	**16	**17

Щ *	EQUIPMENT TO BE ACQUIRED SOON	ACQUIRED SOON				
* *	PATTERN SHOP EQUIPMENT	QUIPMENT				
DET	AILED SURVEY OF	DETAILED SURVEY OF FACILITIES FOR SMALL HYDRO TURBINE MANUFACTURING IN NIGERIA	VDRO TURBINE MAN	UFACTURING IN N	VIGERIA	
INST	ITUTION : EMDI AF	INSTITUTION : EMDI AKURE. TYPE OF WORKSHOP : ADVANCE MATERIALS LABORATORY (QUALITY CONTROL)	: ADVANCE MATERL	ALS LABORATORY	Y (QUALIT	Y CONTROL)
DAT	DATE: 25/7/08					
	DESCRIPTION OF FOLIDMENT	SPECIFICATION/CAPACI TV	A DDI 17 A TION	MAREMODEL		AVAILABLE SKILI S
		TT			COTVIC	DILLED
	Universal Testing		Tensile and			
1	machine	50KN load frame	Compression Test	Instron	Good	
			Phase Analysis and			
	Min X-ray		characterization of	Radicon MD 10,		
0	difractometer		materials	RUSSIA	Good	
	ULTRA VIOLET					
	VISIBLE					ŝ
	SPECTROPHOTO		Optical			sue
e	METER	TABLE-TOP Uv-Us SPEC	characterization	Jenway 6405	Good	sioi
			Ionization of water			นนุจ
	Mega-pure system		(organic & inorganic	Barristead D2-		ъЭТ
4	deionizer	50kΩcm, Conductivity	removal)	system	Good	7
	Weighing scales		Weighing of small			
S	(2Nos.)	1 x 10 ⁻ 3g - 300g	specimen	Ohms Sv 1.10	Good	
	Metallurgical					
	microscope suite		Metallographic and	Olympus(BH2),		
9	(4Nos.)	x 1000 (magnification)	Structural Analysis	Nikon (ME600)	Good	
	Fume chambers					
7	(2Nos.)	2 and 4 Cabinets		locally sourced	Good	

LM Good	Good	c. Good	ET) Good	model Good	() Good	Man Good	ornin Good	3979- Poor	Good	
LECO comp. LM 700AT	Buehler	South-Bay Technology Inc.	Buehler(ISOMET)	Jenway, 3505	Inter Cabs (US)	Sheledon Inc/400E	Gallenkamp,Co g,			Courteb TTCA
micro-hardness testing of materials	mounting specimen	polishing and grinding of specimen	cutting of samples	testing the PH of samples	Heat treatment of sample in waterbath	Drying of sample under vacuum	Heating and drying of Gallenkamp,Cornin samples	study the flow behaviour of material	Drying of samples	
ASTM-E384 microhardness	6000 psi.	50-500 rev/min	Low speed cutting		6 Holes rectangular bath	0-30 mm/Hg 0-210°C	0-220°C		0-250°C	104 U2 U2
Micro-hardness Tester	Specimen mounting press	Grinder/Polisher	Isomet Low speed Saw	PH-Meter	Rectangular water bath (2Nos.)	Vacuum oven	Hot plates with magnetic stirrer (3Nos.)	Rheometer	Oven	Gloue how
8	9	10	11	12	13	14	15	16	17	18

	DETAILED SUR	DETAILED SURVEY OF FACILITIES FOR SMALL HYDRO TURBINE MANUFACTURING IN NIGERIA	IALL HYDRO TURBIN	VE MANUFACTURI	DIN NI ĐN	ERIA
LSNI	INSTITUTION: EMDI AKURE.		TYPE OF WORKSHOP: ADVANCE MANUFACTURING CENTRE	ACTURING CENT		DATE: 25/7/08
No	DESCRIPTION OF FOLIDATION	SPECIFICATION/CAPACI TV	A DBI 1C A TION	MAKEMODEI		AVALAIBLE SKILT S
1	VERTICALMAC HINING CENTER	20 KVA 6500A IP 64	MASS PRODUCTION OF COMPONENTS & PARTS	VMC 750		
0	ELECTRIC DISCHARGE MACHINE	600 X 400 X 400mm	IG MOULDS	PDS-432CSC CNC PRODIS, TAIWAN	Good	
σ	CAD/CAM CENTRE		COMPUTER AIDED DESIGNS & COMPUTER AIDED MANUFACTURING		Good	
*4	CNC LATHE					
\$ \$	CNC SHAPING & DRILLING					
v *	FILAMENT WINDING MACHINF					
*	EQUIPMENT TO BE ACQUIRED	E ACQUIRED				

STATUS AVAILABLE											
STATUS		Poor	Good	Good	Good	Good	1 Good 1 Fair	Good	Good	Good	Good
MAKE/MODEL		Diosgyori Gepgyar Hungary	59	53	Szerszamg Epipari muvek	Evis	VEB Holland	Hiteka Hungary	Gefi Gyor Hungary	China USA Hungary	Spuldzielnia Pracy,
APPLICATION		For Punching (Punch and Die jobs)	For Punching (Punch and Die jobs)	For Punching	Perforating Electrical Panels	Grinding	Spot Welding of Metal sheets.	Drilling of Holes	Folding Metal sheet	General welding work	Press Fitting
SPECIFICATION APPLICATION	CAFAULLI	37.7mm swing 7.5 KW (DSK 100A)	33.8mm swing 4.5KW (DSK 40A)	27.8mm swing (DSK 25A)	7KW	1470rpm	380V	Ø 32mm (max Drill bit)	5mm x 4 ft	50 – 500A	320mm (work piece)
S/N DESCRIPTION	EQUIPMENT	Pneumatic Press	Pnematic Press (2Nos)	Pneumatic Press (2Nos)	Shear Vibrating Machine	Pedestal Grinding 1470rpm Machine	Spot Welding Machine 2No	Pillar Drilling Machine	Folding Machine	Arc Welding Machine	Manual Press
S/N		1.	5.	3.	4.	5.	6.	7.	8.	9.	10.

DATE: 24/07/08 **INSTITUTION:** SEDI – ENUGU **TYPE OF WORKSHOP:** FABRICATION & ASSEMBLY

A – 3.6

	Good	Good	Good	Good	Good	Good	Good	33	
Metalling	Chaos of Heng welding Equipment China	Warp Engr. Ltd	Pro arc PVT Ltd.	Diogyori Gepgyar, Good Hungary	Hungary	Duanues Hungary	Mefmc cups Romania	52	
	Cutting of Non- Ferous Metal	Welding of non – ferrous metals	Welding of Steel	Cuttting of Metal Diogyori sheet Hungary	For cutting cylindrical object (pipes, Reds e.t.c)	For rods and pipes	For sharpening band Mefmc cups Romania saw blade	For sharpening circular saw blade	
10Tons	KLG – 80	Ws 160	Mig - 300	3mm x 4ft	Ø 100mm	400mm	2,900rpm	380V	
	*Air Plasma Cutter	*Tig Welding Machine	*Mig welding set	Guillotine	15. Automatic cylindrical cutter	Power saw	Band saw sharpening machine	Circular saw sharpening	
	11.	12.	13.	14.	15.	16.	17.	18.	

installation	
* Awaiting	
~	

TYPE OF WORKSHOP: MACHINE SHOP INSTITUTION: SEDI – ENUGU

DATE: 24/07/08

AVAILABLE STATUS 3 Good 1 poor Good Fair imports **MAKE/MODEL** Czhechoslovakia solid | Hitecman France Femipari vallalat Mycka Hungary Technoimpex Kdmmyhad, Jotes Poland Tos Trencin Wadonice Hungary Hungary Poland Stanko USSR USSR China To bore holes and cut and keyway, cylindrical small and Ś (internal Grinding flat Surface Hexagon slots APPLICATION spline turning of Milling jobs components workplaces workplace Drill Jobs Grinding Grooves Turining external) Making keyways Shaping Turning Internal gears, gears For slot 1000mm x 150mmØ SPECIFICATION/ 200 x 200 x 200mm 15mm max drill bit (Travel 1.5mm x 200mm 50mm diameter 5Ømm length 300 x 150mm 80mm length 1m x 150mm CAPACITY Extra Heavy Ø 100mm E3N - 01 FND - 32 150mm 400mm lenght) Milling Milling Drilling Universal center lathe Tool milling machine Universal Cylindrical Lathe Machine (4 no) **DESCRIPTION OF** Engraving machine Slotting Machine Shaping machine EQUIPMENT Surface grinder machine (4 no) Turflet Lathe Horizontal Unversal machine Machine machine grinder Pillar SN 11. 10. 12. -4. <u>, 1</u> 9. 5. ÷. i ω.

INSTITUTION: SEDI – ENUGU TYPE OF WORKSHOP: FOUNDRY

DATE: 24/07/08

AVAILABLE S S Ś S S S S S Ś S Ś Ś STATUS Good Fair Iron and metal Industry Veb Inducal Golligen **MAKE/MODEL** Evic Budapest ;; " " " " " " " BUDAPEST Hungary KGYV For melting cast iron steel into For injecting wax into the For mining chemicals wax For Heat Treatment For drilling Objects For heat treatment For removing wax For blending wax APPLICATION For melting wax For drying jobs For pulping For cooling paste stage die mould SPECIFICATION/ 50kg of molten wax 10kg of molten wax 21KW, 3Phase CAPACITY 440 - 1Min 0.175KW 380/220V 8,000HZ 0.37Kw 3.7KW **3Phase** 1.5KW 2.5KW 56KW 42KW 50HZ 380V 5bars 380V 380V 700v 10kg 5.9A (Double Machine Oven (Single chamber) **DESCRIPTION OF** Wax pulper machine Dewaxing machine Induction Furnace Suspension Mixer **Drilling Machine** Drying Machine EQUIPMENT **Oven Furnace** (wax press) Chamber) Injection Chiller Oven Oven S/N 11. 10.12. -... <u>5</u>. 9. 4 i ω. <u>.</u> ÷.

50HZ

13.	13. PIT Furnace	50KG	For Non- Ferrous metals		Good	5
14.	14. Moulding Machine	60KG	For moulding	Format 10 - 1	Good	5
15.	15. Sand miller mixing 4KW machine 380V	4KW 380V 5011-	For mixing the moulding Sand.	Dozamez Ms – 0075c	Good	Ś
		2000				
16.	Die casting machine (3 120 tons(1)	120 tons(1)	For die casting	FMO KRAKON	Good	5
	Nos)	49 tons (2)		PATO - 6		
17.	Shake - out machine	6cu ³ /hr	Shaking out Moudle	Moudle M/3 Technocrats	Good	5
		1.5kw	casting	TDC - 40		
18.	18. Sand blasting machine		Cleaning and Casting	7 - 5.16619	Good	5
19.	Grinding machine	2.990 rpm	For Grinding Jobs	Ak - 22	Good	5
		Max wheel size				
		175/20x20				

INSTITUTION: SEDI – ENUGU **TYPE OF WORKSHOP:** ELECTRICAL R & D **DATE**: 24/07/08

AVAILABLE															
STATUS	Fair	Good	Good	Good	Good	Good	Fair	Poor	Good	Good	Good	Good	Good	Good	Poor.
MAKE/MODEL	Hiradastechnikai Gepayara	Tos celakonivice n.p	Diosgyori Gepgar	Diosgyori Gepgar (DKS25A)	SEDI - E	SEDI - E	Locally made	ı	DT 9205	Duoyi DY30 - 1	Tm 2100	1	1	1	I
APPLICATION	Production of Tranformer coils for higher capacity	Production of low power transformer coils	Stamping out transformer Lamination	Production of Bobbin (Transformer former)	For teaching transformer parameters	Teaching Electrical machine application	Motor coil production	Production of PCB	For continuity testing	For testing insulation	For measuring rpm	For dopping and lamination	For drilling holes on control panels of electric components	For drying of Transformer	For impregnating coils and lamination
SPECIFICATION/ CAPACITY	1KW	3KW	7.5KW	4 & 3KW	500W	1000W	-	-	1000V	10,000V	10,000rpm	1	3KW	5KW	5KW
DESCRIPTION OF EQUIPMENT	Coil making machine	Modified Lathe machine	Pneumatic press machine	Pneumatic press machine	Transformer Trainer	Basic machine Trainer	Wooden former	UVE Exposure	Digital Bench Multimeter	Digital Insulation tester	Digital Tachometer	Silicon dopping machine	Doilling Machine	Ovum	Impregnating
N/S	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.	15.

NATIONAL AGENCY FOR SCIENCE AND ENGINEERING INFRASTRUCTURE (NASENI)

Location: Idu, Industrial Area, Abuja

Postal Address: NASENI Federal Ministry of Science & Technology Idu, Industrial Area P.M.B. 391 Garki, Abuja.

Overseeing Ministry: Federal Ministry of Science and Technology, Abuja

Mandate/Activities: Specifically in the area of capital goods, research,

production, and reverse engineering with respect to broad areas:

- Engineering materials
- Engineering Equipment; Mechanical, Hydraulic, Pneumatic etc.
- Engineering Designs and Standardization.
- Power Equipment: Generation, Transmission, Distribution, Prime movers; Mechanical.
- 4.1 **Mission:** To establish and nurture an appropriate, dynamic and Engineering Infrastructure base for achieving home – initiated and home sustaining industrialization through the development of relevant process, capital goods and equipment, necessary for job creation, national economic well being and progress.
- 4.2 **Vision:** To create an enabling knowledge driven environment for local mass production of standard parts, goods and services, required for the Nation's Technological advancement.
- 4.3 **Target:** Small and Medium Scale industries, through the impartation of technologies, engineering principles and practices for the production of equipment that will meet international standards as well as flourish local capital goods industry.

Management Structure:

In pursuant of its mandate, the Agency operates through 7 development institutes: -

Science Equipment Development Institute -

- SEDI, Enugu.
- SEDI, Minna

Electronics Development Institute -

ELDI, Awka

Hydraulic Equipment Development Institute

HEDI, Kano

Engineering Materials Development Institute • EMDI, Akure.

National Engineering Design Development Institute • NEDDI, Nnewi

Power Equipment and Electrical Machines Development Institute-• PEEMADI, Okene.

7.0 Human capacity: NASENI Head Quarters has engineers trained in the field of Small Hydro POWER Technology. One was trained in China in 2006; two others will conclude their training in June 2008. Also available is a pool of engineers trained in the use of CAD software such as: Autodesk, Solid Works, Pro-Engineer; Modeling and Simulation software such as Mat lab, COM sol, Hysys, Granary Design, Ansys.

NASENI is adopting the process of Reverse Engineering for the Turbine project in collaboration with identified stakeholders and some Nigerian Higher Institutions with relevant competences.

NASENI has the human and material capacity to implement the Turbine Fabrication project as follows:

- Over 70 graduate engineers
- Over 5 PhD engineers
- Over 30 M Sc.
- Over 50 Scientist
- Over 100 technologist, technicians
- Over 100 craftsmen and artisan
- Over 100 Research fellows
- A mandate to source for and utilize experts in any discipline and from anywhere
- Work with a lot of universities in the implementation of some projects.
- Sponsor some research and development projects in tertiary institutions and R & D Institute.

8.0 Workshop Facilities:

All the Development Institute are equipped with the typical AMC as the following:

Mini – foundries Mechanical workshops Advanced Manufacturing centre (AMC)

9.0 Equipment List:

A list of newly acquired equipment and machinery for the development institutes are shown in A.3 -2

- i. Vertical Milling Machine
- ii. CNC Lathe
- iii. Surface Grinder
- iv. Electric Discharge Machine (EDM)
- v. Rotary furnace

- vi. Induction furnace
- vii. Pattern shop.

10.0 NASENI INITIATIVE IN SMALL HYDRO POWER EQUIPMENT MANUFACTURING

10.1 <u>Scope</u>

In the long term, the Agency is working towards the establishment of a Small Hydro Power Machinery and Equipment Development Institute and a Manufacturing Industry to go along with it. However, in the short term, the Agency is adopting a model which will lead to quick harvest of "low-hanging fruits" to show that it is do-able. Knowing that the "heart" of a Small Hydro Power project is the turbine, a domestically made Small Hydro turbine will therefore "leap-frog" the process of rural electrification and ultimately bring down the per kilowatt installation cost of Small Hydro Power plants. Hence, NASENI's current focus on the local fabrication of small hydro turbine with capacity ranging between 70 and 100KW.

10.2 <u>Methodology</u>

The Agency is adopting the process of Reverse Engineering for this project in collaboration with identified stakeholders and some Nigerian Higher Institution with relevant competencies.

10.3 <u>Capacity to run the Proposed Project</u>

10.3.1 Experience (Skills) Garnered from Past and On-going Projects

NASENI has successfully used the reverse engineering method to develop the local fabrication of the Seed Oil Expeller. Also, the Agency's Collaborative efforts in R & D with some universities have yielded result on the design and production of cassava flour processing plant project.

1.0 The Seed Oil Expeller

This is one of our flagship products in the concept of Reverse Engineering. The Agency acquired a seed oil expeller with the aim of replicating it and developing the requisite skills for its mass production. Currently, the Agency has successfully replicated it; the prototype seed oil expeller is available. The working drawings in 2D and 3D AutoCAD designs are also available.

The machine was fabricated, assembled and in perfect working condition. Oil from groundnut and palm kernel have been produced. Work is also on-going on the production of the manufacturing layout which will be published and made available to Small and Medium Enterprises (SMEs) who will be involved in proliferation of the machine. NASENI has shown that this is do-able.

2.0 Integrated Cassava Flour Processing

The project is still on-going and was aimed at designing and manufacturing a prototype cassava/yam processing plant with a capacity up to 2.5tons per day, and providing the technological environment for the private sector to produce high quality cassava and yam flour and the local manufacturing of the processing plant. The Project is run in

collaboration with five Universities with core competences in various equipment that make up the production line. These are:

Abubakar Tafawa Balewa University, Bauchi (ATBU) Federal University of Technology, Minna (FUTM) Federal University of Technology, Owerri (FUTO) Federal University of Technology, Akure (FUTA); and Obafemi Awolowo University, Ile Ife, (OAU).

All the component machines of the processing plant have been produced and tested. The remaining phases of the project include the integration and instrumentation of the component machines and then commissioning. Thereafter, an investors' forum will be organized in order to cede it to a private firm interested in mass producing the processing plant.

NASENI DEVELOPMENT INSTITUTES MANDATES

In pursuant of its mandate, the Agency operates through Development Institutes. So far, there are seven Development Institutes established. They are:

(i) Science Equipment Development Institute (SEDI), Enugu

• The development and production of scientific equipment and their production systems, and the transfer of these to private sector satellite industries;

(ii) Science Equipment Development Institute (SEDI), Minna

- The development and production of scientific equipment and their production systems, and the transfer of these private sector satellite industries;
- (iii) Electronic Development Institute (ELDI), Awka (formerly, Centre for Adaptation of Technology (CAT))
 - The development and production of electronic materials and assemblies, and their production systems, and the transfer of these to private sector satellite industries;

(iv) Hydraulic Equipment Development Institute (HEDI), Kano

• The development and production of hydraulic and pneumatic machinery, materials, and their production systems and transfer of these to private sector satellite industries;

(v) Engineering Materials Development Institute (EMDI), Akure

• The development and production of engineering materials and their production systems, and the transfer of these to private sector satellite industries;

(vi) National Engineering Design Development Institute (NEDDI), Nnewi (formerly, National Engineering Design Development Centre (NEDDEC))

• The development of engineering design capacity and its dissemination to Small and Medium Enterprises (SMEs) in order to standardize Nigerian made products and make them globally acceptable.

(vii) Power Equipment and Electrical Machines Development Institute (PEEMADI), Okene

The development and maintenance of power and electrical equipment and their production systems and the transfer of these to private sector satellite industries.

S/N	Description	Qty.	Location
1.	Spindle Digital coil winding machine with one size tension and nozzle. Type WH-7611	2	PEEMADI-Okene
2.	Spindle Digital coil winding machine with tapping device type WH-8001	1	PEEMADI-Okene
3.	Spindle Digital coil winding machine with tail stock type WH-7511	2	PEEMADI-Okene
4.	Spindle Digital coil winding machine with one size tension and nozzle type WH-7611	6	PEEMADI-Okene
5.	Spindle Digital coil winding machine with tapping device type WH-8001	3	PEEMADI-Okene
6.	Spindle digital coil winding machine with tail stock type WH-7511	6	PEEMADI-Okene
7.	Local Winding Machine (from Akure)	2	PEEMADI-Okene
8.	CNC lathe machine type CKD 6150D/1500	2	1. SEDI-Minna 2. NEDDI-Nnewi
9.	Vertical milling machine type VMC 750	2	1. HEDI-Kano 2. SEDI-Minna
10.	Shaping machine type B6085	2	1. PEEMADI-O 2. PEDI-Ilesha
11.	Vertical milling machine type VMC 750	4	 NEDDI-Nnewi SEDI-Enugu EMDI-Akure PEEMADI-O
12.	Electrical Discharge Machine type PDS-432CS 60A -	2	1. PEEMADI-O 2. NEDDI-Nnewi
13.	CNC Lathe Machine	1	PEEMADI-Okene
14.	Sheet Production & Type F Clay Brick Plants.	1	PEDI-I
15.	(EN) Lathe Fagor 8040TC Controller and Accessories. (From Technovation)	2	1. PEEMADI-O 2. PEDI-I
16.	Electrical Discharge Machine. (From Technovation)	1	EMDI-A
17.	Virtual Manufacturing Laboratory	1	NASENI-HQ
18.	Pro-E Laboratory	1	NASENI-HQ
19.	Vertical Milling Centers VMC 750	16	16 Nigerian Universities.
20.	Rapid Prototyping Machine	2	PEDI-I

List of Newly Acquired Equipment and Machinery

SUMMARY:

Machine	CNC	VMC	SHAPING	EDM	EN	WINDING	SHEET	VML	PR	Total
Centre	LATHE		MACHINE		LATHE	MACHINE	PRODT'N		0-	
							PLANT		Е	
NASENI-HQ								1	1	2
SEDI-M	1	1	-	-	-	-	-			2
SEDI-E	1	1	-	-	-	-	-			2
NEDDI-N	1	1	-	1	-	-	-			3
HEDI-K	-	1	-	-	-	-	-			1
EMDI-A	-	1		1	-	-	-			2
PEEMADI-O	1	1	1	1	1	22	-			27
PEDI-I	-	-	1		1		1			3
Total:	4	6	2	3	2	22	1	1	1	42

1	Exch	nange rate (US\$ to NGN)	120	NGN	
2	Prod	luction Capacity per Annum (Year 1)	3		
3	Inve	stment Cost			
0	S/N	Description Cost	Amount US\$	Amount (NGN)	
	1	Additional facilities	1,000,000.00	120,000,000.00	
	2	Expert Team Verification	5,000.00	600,000.00	
	3	SHP Model Procurement	60,000.00	7,200,000.00	
	4	SHP Component - Engineering Drawing	10,000.00	1,200,000.00	
	5	Training Cost (ToT)	54,000.00	6,480,000.00	
	6	Fabrication of SHP Component	69,000.00	8,280,000.00	
	7	Assembling and Testing	10,000.00	1,200,000.00	
	8	Commercialization & Investors Forum	25,000.00	3,000,000.00	
	8 9	Project Implementation Meeting	5,500.00	660,000.00	
	9	Contingency	14,500.00	1,740,000.00	
	10	Grand Total	1,253,000.00	30,360,000.00	
			1,235,000.00	50,500,000.00	
4	Mate	erial Cost			
	S/N	Description	Lots/Turbine	Unit Price (NGN)	Amount (NGN)
	1	Turbine Runner	1	400,000	400,000
	2	Shaft	1	750,000	750,000
	3	Bearing Housing	1	300,000	300,000
	4	Gate House Apparatus	1	300,000	300,000
	5	Pulley	1	200,000	200,000
	7	Gear Box	1	100,000	100,000
	7	Contingencies	1	200,000	200,000
		Sub-Total			2,250,000
5	Trar	nsferred Cost			
	S/N	Description	Qty/Turbine	Unit Price (NGN)	Amount (NGN)
	1	SEDI, Enugu	1	96,000	96,000
		Sub-Total			96,000
6	Othe	er Cost			
	S/N	Description	Qty/Turbine	Unit Price (NGN)	Amount (NGN)
	1	Cost of Design/Supervision by Turbine Team	1	400,000	400,000
		Sub-Total			400,000

7	Wag	es: Fixed Cost	No of staff	Rate	Total
	1	Project Engineer	1	1,200,000	1,200,000
		Sub-Total			1,200,000
8	Gen	eral expenses - Fixed cost			
		Description	Unit	rate	Amount
	1	Telephone, Postages, couriers & others	12	12,000	144,000
		Sub-Total			144,000
	0&1	M Turbine/Turbine			4,090,000
	0&1	M Turbine/Turbine per annum (Year 1)			12,270,000
9		nover			
	S/N	Description	Selling Price (US\$)	Selling Price (NGN)	Turnover (NGN)
	1	Turbine 50kw	40,000	4,800,000	14,400,000
		Grand Total			14,400,000
		Margin Year 1			
		Fixed Cost			1,344,000
		Variable O&M			2,746,000
		Total Cost			4,090,000